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We consider smali perturbations of plane parallel flow be&veer. a wail and a moving free 
surface. The problem is posed on a rectangle with inflow and out!low bout?dariss. The ~sua! 
boundary conditions are posed at the wall and the free surface, and the fluid satisfies the 
Navier-Stokes equations. We examine the nature of boundary conditions which car. be 
imposed at the inflow and outflow boundaries in order to yield a well-posed problem. This 
question tilrns out to be more delicate than is generally appreciated. Depending on the precise 
situation and on the regularity required of the solution, boundary conditions ai- just one or 
both endpoints of the free surface need to be imposed. For example, v.e shobi that if :he 
velocities at the inflow and outflow boundaries are prescribe+ then the position of the free 
surface at the inflow boundary can be prescribed, but not at the out!Iow if an HI-soiuticz is 
desired. Numerical simulations with the FIDAP package are used to illxtrate our analytical 
resulrs. !Z 1991 Academic Press. Inc 

I. INTRODUCTJON 

For flows with free surfaces terminating at walls, the prescription of the contact 
point or the contact angle has long been accepted as a correct boundary condition. 
Fn recent years, a number of rigorous existence and uniqueness theorems have 
been established for problems of this kind; we refer LO [2, 31 for a review and for 
references to previous literature: these concern steady problems with free surfaces 
terminating at walls. 

Many numerical simulations of practically relevant Qows, however, involve free 
surfaces which terminate not at a wall, but at a computational inflow or outnow 
boundary. .4n example is the free-surface problem that arises in coating flows, for 
which a portion of the domain is truncated and solved. Another example is layered 

ow in a channel of finite length, with interfaces: this raises the question of whar 
conditions to pose at inflow and outflow boundaries, What typifies these examples 
is a numerical truncation of the flow domain. This type of situation does not seem 
co ha.ve been analyzed nearly as well. Since in- and outflow boundaries are ma&e- 
matical artifacts, the nature of boundary conditions to be imposed canno! be 
guessed from physical reasoning. 

In the following, we consider a model problem which is easy to analyze and at 
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326 RENARDY AND RENARDY 

the same time provides a prototype for the more complex problems which might 
arise in real applications. We study small perturbations of a plane pamllel flow 
bounded by a wall at the bottom and a moving free surface at the top. We 
investigate the linearized problem. We shall demonstrate that in some situations 
well-posed problems are obtained if the position of the free surface is prescribed 
only at the upstream boundary, not at both boundaries. We believe that this may 
explain some pathological behavior which was observed in attempts to simulate 
flows of this type using the FIDAP package Cl]. These numerical results are 
discussed in Section 3 below. 

The equations of interest are the Stokes equations (the inertial nonlinearities in 
the Navier-Stokes equations contribute only terms of lower differential order which 
are not important in the analysis that follows) 

f3V 
~z=rlAv--Vp, div v = 0, 

in the two-dimensional domain given by 0 <x < L, 0 < 1’ < M + /z(x). The bottom 
is a moving wall with the no-slip condition, 

v(x, 0) = (UT O), (2) 

and the top is a free surface. With n = (-h’(x), 1)/,/m and 
/ 

t = (1, h’(x))/,/ 1 + hf2 denoting the unit normal and tangent, we have the boundary 
conditions of continuity of shear stress and the balance of normal stress by surface 
tension, 

Ypl(Vv+(Vv)‘)t=0, rln(Vv + (Vv)‘)n-p = S 
h” 

(1 + hT2)3!?’ 

and the kinematic free-surface condition 

(4) 

Equations (l)-(4) have the exact solution h = 0, v = (17, 0), p = 0. We consider small 
perturbations of this exact solution, which are caused by adding forcing terms to 
(l), (3), and (4). We linearize the equations and take Laplace transforms with 
respect to time. The perturbations then satisfy the Stokes equations 

(5) 
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on the unperturbed domain 0 -C .x < L, 0 c p c M. Here, fl and .f2 are the given 
forcing terms. At the bottom wall JJ = 0, we have the no-slip condition 

u==tl=o, (5, 

and at )’ = i. the linearization of (3) and (4) yields 

where .f3 T I’J, and Jf5 are the given forcing terms. At the inflow and outflow bouc- 
daries x = 0, L we shall impose either the tangential ve!ocity 

or the shear stress 

L’ = 0 igai 

and either the normal velocity 

Li=o /9@) 

or the normal stress 

In the following, we discuss the well-posedness of the problem (5 )-(9) in 
appropriate function spaces. In order to obtain a well-posed problem, we need to 
impose boundary conditions on h(x, I). The nature of these boundary conditions is 
the principal issue of the paper. We first give some heuristic considerations. If i = 0 
and U = 0, we can first ignore the second equation of (7) and use the remaining two 
equations as boundary conditions for the Stokes problem. After solving the Stokes 
problem, the second equation in (7) is used to obtain k. Clearly, this requires two 
boundary conditions on h, e.g., h may be prescribed at each endpoint. If i and CT 
are not zero, we may hope to treat the terms 11~ and U/r’ as a perturbation, If, on 
the other hand, S=O, then we can use the first two equations of (7) as boundary 
conditions for the Stokes problem and then recover lz from the third equation. Since 
the third equation of (7 j is first order in h, only one boundary condition is required, 
At first it may appear that the term Sh” is necessarily a singular perturbation, 
because it involves the highest derivative of h. However, this appearance is 
deceiving. The term S/J” in (7) appears in the same equation as derivatives o:’ th.e 
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velocity, while the term Uh’ appears together with the velocity. Hence the two terms 
are formally of the same order. Whether either of these terms (or both) may be 
treated as a regular perturbation requires a careful analysis and will depend on the 
function spaces chosen for the analysis. 

2. WELL-POSEDNESS FOR THE LINEARIZED EQUA~ONS 

We shall consider (5)-(9) in the context of weak (variational) solutions. Let 52 
denote the domain (0, L) x (0, M) and let r denote the top boundary. For the 
moment, we shall consider only the boundary condition (8a). We seek velocities in 
the space X, or XD, defmed as 

A’,= {vE(H’(O))~ 1 d’ 1vv=o, v(.,O)=O, tl(O;)=v(L, .)=Oj, (lob) 

if boundary condition (9b) applies. Here, the vertical components of the velocity 
and normal stress vanish. The subset of X, where boundary condition (9a) applies 
is 

x,= (VE& 1 u(0, .)=u(L, .)=Oj. 

In the following X denotes X, or X,, whichever is appropriate. 
The equations have the weak form 

(loa) 

where the notation A:B, with matrices A and B, denotes xi,j A,B,. The vector 
@ = (4, @) is a test function and is an arbitrary function in X, where CJ~ and $ are 
functions of x and J'. (F, @) denotes the expression 

(12) 

where the fi appear in (5) and (7). In the usual manner, we take (11) with F E X 
(the dual space of X) as the generalized interpretation of our equations. In addition 
to (ll), we still have the kinematic free-surface condition 

Ah+ Uh’=v+fj. 

We now distinguish the following three cases: 

(i) S= U=O, 
(ii) U=O, S>O, 

(13) 

(iii) U>O, S>O. 

Our main result is the following. 
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We refer to [4] for the definition of the function spaces used here. In cases [ii) 
and (iii)? the integral on the right-hand side of (11) is interpreted by du&ty 
between the space HbjZ(O, L) and its dual. which we denote by H;’ ‘(0, L). TVP 
note that the results for the three cases are quite different. n particular, the term 
L%’ in (13) cannot be considered a regular perturbation even if C: is small, We n.zte 
also that part (iii) makes no distinction between the cases S= 0 and S>O. As we 
shah see in the proof, however, there is a difference in the estimates which apply for 
!I.( --P 23. 

We now give the proof of the theorem. Case (i) is st~aigbtfor~~ard. If this case 
applies, then h disappears from Eq. (11 J, which is now simply the Stokes probiem,. 
Equation (II) is uniquely solvable for Re 3.3 0, and the solution satisfies the 
estimate 

which is obtained by setting @ = v in (11). If 2 # 0, we can then solve < 13) for h and 
we have 

For case (ii)7 we first consider A= 0. In this case; ( 13) yields 17 = -.f5 (if ($a) 
applies, then this is consistent with the divergence condition only if ,f5 has zero 
average). We combine this equation with (I 1 j, where is restricted to satisfy 
+ i r= 0. The problem thus obtained is a Stokes problem which is uniquely solvable 
for v. .4fter inserting v into ( 1 1 ), we can determine h” E H; 1’2(0, LJ (if (9a) applies, 
then all test functions @ satisfy 16 $(s, M) d.y = 0 and hence (11) determines 
.A” only up to a constant ). From h” and the imposed boundary conditions 
b(Oj = h(L) = 0, we can determine h E H3,2(0. L). With Eqs. (14 ) and (13 ). we can 
associate a linear operator L from Xx H’,“(O, L) n H~iO. L) into X’ x AH&2(G, t’:: 
whizh maps (v, h) to (F, f5). We have just shown that, for i = 0 and boundary con.- 
dition (9b), L is invertible, while for (9a) the nullity and deficiency are both eqcai 
to 1. The operator for A# 0 is a compact perturbation and is hence Fredholm oT 
:nde?t zero. Hence it suffices to show uniqueness 0: solutions; existence fo!lows 
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automatically. We now set @ = v in (11) and we use (13) in the term in the integral 
on the right-hand side of ( 11). This yields, after an integration by parts, 

pl l~v~~:2+qJ 
n 

(Vv+(vv)~):v~rln~~+s~~= (h’121Z,t- 
0 

= (F, v) - s 1” h’y, czx. (16) 
0 

The uniqueness of solutions follows immediately. 
We now turn to case (iii), and again we begin with A= 0. In this case, (13) yields 

h” = (0’ +f;)/U, which we insert into (11). This yields 

For S= 0, we have the Stokes problem, which is uniquely solvable. If S/qU is 
sufficiently small, we also get unique solvability by regular perturbation theory 
(the mapping u + dv/~% ) r is continuous from X to Hc’,‘~(O, L)). Moreover, if we set 
@ = v and take the real part in (17 j, we obtain 

rl 1 (Vv+(Vv)‘):Vr~,~~~=Re(F,v)+~Re~o~/.:(-~)r(x,M)d.r. (18) R 

From this, we obtain the a priori estimate 

Il~llx~C(IIFIIx~+ llfjllH~2). (19) 

This implies that the operator corresponding to (17) is injective and has closed 
range. The continuity of the Fredholm index implies now that (17) is uniquely 
solvable for every S. Having found v, we can determine h from (13) if we impose 
one boundary condition. 

The case 2 # 0 is again a compact perturbation of A= 0. Hence it suffices to show 
uniqueness of solutions. To this purpose, we set CD = v and use (13) twice to 
transform the integral on the right-hand side of (11) as 

(20) 
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By inserting into ( 11) and taking real parts, we obtain 

(Vv+(Vv)‘):Vvd~~~~l+S(ReL) [’ 
“0 

Uniqueness of solutions follows immediately. 
We shah next consider the boundary conditions (gb) and (9a j. We consider only 

the case A= 0. The space X should be defined as 

We shall consider data FE x’, f5 E H “‘(0, L) and seek solutions v E X7 
he (gEH3i2(0, L) / g”eN-“2(0, L), g(O)=g(L)=O). If U=O, S>I). we proceed 
analogously as in case (ii) above. We obtain c = -.f5 from (13). and this equation 
together with (11) (where @ is restricted by the condition $I( ., M) = 0) Grms a 
Stokes problem which is uniquely solvable. Compatibility with the divergence ccn- 
ditions requires that the average of.f5 must be zero. From (11) we can then deter- 
mine 11” up to a constant, and from k” and the boundary conditions h(O) = h(E) = C 

we can determine h. Hence the Fredholm index of the operator in the given func- 
tion spaces is zero. Since the mapping h -+ 11’ is continuous from If”’ to EL,‘, we 
can treat the term 0%’ as a regular perturbation. Hence, at least for large values o:’ 
the dimensionless surface tension parameter S,$ll. we have Fredhoim index zero if 
two boundary conditions are imposed on the free surface. We note that it is not 
possible to start from S = 0, L’> 0 and treat the term 5%” as a regular perturbation. 
This is because the mapping il --f t’r” 
mt into H- ‘,‘. 

2s continuous from H3,’ only into I$;‘,“. but 

This discussion seems to indicate that, when the shear stress rather than the 
vertical velocity is prescribed at the inflow and outflow boundaries, boirndzry 

conditions are required at both endpoints of the free surface; namely, one boundary 
condition is required for the free surface height iz at each end. However, we shail. 

see that the issue is more subtle. Let us consider the special case of (5)-(‘7’1, (Sbl., 
(!?a), where 2 = 0 and, in addition, fl =jz = 0. We now look for solutions of higher 
regularity. Let s be any number such that 1 <s < 2. The foollowing lemma holds. 

The proof is straightforward. In case (a), we procee as above, in case (b’;. we 
proceed in analogy to case (iii) of the theorem. The regularity result required fur 
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the Stokes problem is easily obtained, because the boundary conditions which we 
have imposed are consistent with extending 14 as an odd periodic function and L’ and 
p as even periodic functions of x with period 2L. Hence we only need to consider 
the Stokes problem with periodic data, without having to concern ourselves with 
investigating corner singularities. 

We can now start from part (a) of the lemma and treat the term Uh’ as a regular 
perturbation. However, the second derivative operator is continuous from Hs+ Ii2 
into Hs--3,2, and hence we can also start from part (b) and treat the term SK’ as 
a regular perturbation! Hence, if the capillarity number r/U/S is small, we obtain 
an operator of index zero by imposing two boundary conditions on h, but if VU/S 
is large, we obtain an operator of index zero if we impose only one boundary condi- 
tion. In between, there must be a critical value of l~U/ils where the operator is not 
Fredholm with either number of boundary conditions. This critical value depends 
on s. Hence the number of boundary conditions required for the endpoints of the 
free surface depends on the parameters of the problem and also on the function 
space in which we require the solution to be. Clearly, a complete analysis would 
require an investigation of the behavior of solutions at the corners. The asymptotic 
behavior at the corners is discussed in [S]. 

Remark. There are also situations of practical interest where one end of the 
free surface is attached to a wall, while the other end is at an inflow or outflow 
boundary. This situation remains to be investigated. 

3. NUMERICAL RESULTS 

The numerical simulations were done on the full Navier-Stokes system using the 
fluid dynamics package (FIDAP) [ 11. Nine-node quadratic quadrilateral elements 
are used for the interior, and three-node quadratic free-surface elements are used. 
The mixed velocity-pressure formulation with discontinuous pressure approxima- 
tion is employed. The solution at each timestep of the nonlinear time-dependent 
problem is solved with the Newton-Raphson iterative method, which is accelerated 
(relaxed) by means of an acceleration factor of 0.5, together with the backward 
Euler time integration scheme. The initial timestep is 0.01. and successive timesteps 
are chosen adaptively. 

Simulations are carried out on the domain 0 < x < 47c/3, 0 < y < 1 + h(x, t), where 
initially we have Iz(x, 0) = 0.1 sin(3x). The mesh size is 27 by 13 nodes. The 
viscosity, density, and surface tension coefficient are all set equal to one. The 
bottom wall J’ = 0 moves with unit velocity, and the top boundary is a free surface. 
We note that the only dimensionless parameter which is relevant in the analysis 
above is the capillarity number VU/S, which is unity for the parameters used in the 
computation. 

A number of simulations are performed with velocities u = 1, o = 0 prescribed at 
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both the left and right boundaries. Initial conditions are generated in two different 
ways. For the first, we simply set the velocity equal to (I+ 0) throughout the whoke 
domain. For the second, we solve the Stokes problem with prescribed velocity ( 1, 0) 
at the bottom, left, and right boundaries, together with the free surface conditions 
(but with the position of the surface kept fixed) at the top boundary. For this 
second case, the initial data are compatible with the boundary conditions at the free 
surface, while for the first case they are not. There is iittle difference in the results 
between the two cases, and we only show those for the second case Figure P shows 
the solutions obtained at various time steps when %! = 0 is imposed a; both 
endpoints of the free surface. Figure 2 shows results obtained when h = 0 is imposed 
only at the left endpoint and no condition on Iz is imposed a; the right endpoint. 
In both simulations, the free surface is flattened by surface tension and the Eow 
becomes uniform as would be expected. However, in Fig. 1 we can see unphysicai 
wiggles in the free surface appearing near the outflow boundary. The wiggles are 
localized in one corner of the domain. Qutside the small region where the wiggles 
appear, the plots in Figs. 1 and 2 are indistinguishable within graphical resolution 
This matches up well with our analysis above which indicates that on!y the free szr- 
face position at the inflow boundary should be prescribed. The rest&s displayed in 
Fig. 1 have been verified with a finer mesh. The only change was that the wiggles 
appeared on the scale of the new mesh. 

In Fig. 3, we impose stress-free boundaries rather than velocity con 
mffow and outflow. Contact angles are prescribed at both endpoints of the free sur- 
face These contact angles are chosen to be compatible with the initial free surface 
position, which is as above. The initial velocity field is generated by sclving th:: 
Stokes problem with constant velocity f I,0 j at the bottom, zero stresses at the ieft 

FIG. 1. The mesh is shown at timesteps 5, 10, 15, and 20, or times 0.1X1, 0.4590. 0.9755, and I857 

Note the presence of wiggles on the scale of the mesh where the free surface meets the octflow boundzry. 
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FIG. 2. The mesh is shown at timesteps 5, 10, 15, and 30, or times 0.1211, 0.4826, 1.069, and 2.341. 
No wiggles are present. 

and right boundaries, and free surface conditions at the top boundary. Because of 
the prescribed non-zero contact angles, the solution does not approach uniform 
flow. On close inspection of the plots, one can see a very slight wiggle where the 
free surface meets the outflow boundary, but this is much less pronounced than in 
Fig. 1. This is consistent with the analysis above, which suggests only a mild 
singularity in the present case. It would be instructive to repeat the calculation with 
only one contact angle prescribed, but the FIDAP algorithm does not seem to 
make this possible. 

FIG. 3. The mesh is shown at timesteps 5, 10, 15, and 20, or times 0.0555, 0.2051, 0.5958, and 1.484. 
A very slight wiggle is present where the free surface meets the outflow boundary. 
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1. CONCLUSIONS 

We investigated the motion of a fluid bounded by a moving wall at the bottom, 
a free surface on top and inflow and outflow boundaries at the left and right. The 
linearized problem for small perturbations of uniform flow was studied. If the vert~- 
cai velocity and either the horizontal velocity or the normai stress is prescribed at 
the inflow and outflow boundaries, then a well-posed problem is obtained by 
prescribing only one boundary condition for the free surface position. If one tries 
to prescribe the free surface position at both endpoints, then, in generai, there wZf 
not be solutions such that the velocity is in H’. Tn numerical simulations, wiggles 
appear near the corner between the free surface and the outflow boundary: 
these wiggles disappear if the free surface position is prescribed oniy at t 

boundary. 
If the shear stress rather than the vertical velocity is prescribe at the inflow arrd 

outflow boundaries, the situation is different. Our analysis this case is less 
complete, but it indicates that, in order to find a unique solution with 
in H”, 1 < s : 2, it is sufficient to prescribe one boundary condition if the ca 
number is large, but two boundary conditions are required if the capiilarity number 
is small. 
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